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Abstract: Electron-deficient heterocycles, such as the hexaazatriphenylenes, avoid ir-Compiexation in the solid state. 
We observe that interplane amide hydrogen bonding controls secondary structure and induces 7r-complexation in the 
solid state of an organic hexaamide predisposed to avoid it. 

Because many of the useful macroscopic properties of materials 
are engendered by molecular organization, the control of solid-
state assembly is of current interest. For example, second-order 
nonlinear optical response by a crystal requires noncentrosym-
metry;1 engineering the necessary solid-state ordering may be 
approached in intellectually satisfying ways.2 Bulk conductivity 
is likewise related to solid-state structure. Conducting organic 
solids often display Coulombically unfavorable cationic ir-stacks.3 

It is likely that the conductivity of organic polymers is limited 
in part by poor interstrand association, since association would 
provide a pathway past chain defects.4 We have considered 
whether intermolecuiar hydrogen bonding might be used to 
engender ir-overlap in an organic material predisposed to avoid 
it. Of course, multiple amide-amide hydrogen bonds are 
employed by nature for control of secondary structure in proteins;5 

the molecular packing of even simple amides generally displays 
interlinked H-bonded rings forming ribbons with their axes 
arranged in parallel planes.6 We now report that the occurrence 
of multiple amide hydrogen bonding induces the formation of 
stacked, ir-complexed dimers in the solid state of an organic 
hexaamide. 

Hexaazatriphenylene (HAT) derivatives 1-57 are strongly 
electron-deficient heterocycles, as demonstrated by: (1) their 
high reactivity toward base, (2) the fact that the cyclic voltam-
mogram of hexanitrile 1 in acetonitrile reveals four reversible 
one-electron reductions,8 and (3) the observation that compounds 
1-4 form colored charge-transfer complexes with various ir-bases 
(e.g., indole) with no observable propensity to form complexes 
with x-acids. Thus, it appeared likely that the heterocycle would 
be predisposed to avoid self-ir-complexation; X-ray analyses of 
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many other electron-deficient aromatic heterocycles support this 
view, as documented in Table I.9-18 However, hexaamide 2 
appeared uniquely capable of associating via intermolecuiar 
multiple hydrogen bonding; indeed, the solubility of 2 is extremely 
limited as compared to those of 1, 3, 4, and even 5, which has 
H-bond acceptor but not donor sites. The crystallization of 2 
was accomplished using slow water vapor diffusion into DMSO 
solution, 3 was crystallized from water containing 1,2,3,4-BTA, 
and 4 was crystallized from CH3CN/MeOH (9:1)." Hexaamide 
2 yielded two crystal types, trigonal (form A) and triclinic (form 
B); the only known difference in crystal growth procedures was 
that form B grew in a system disturbed for examination at irregular 
intervals, whereas form A grew in a system undisturbed for several 
months. The X-ray structures of 3 and 4 reveal rigorous avoidance 
of HAT-HAT 7r-stacking;20 this trend is observed likewise in the 
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Figure 1. 

Table 1. Summary of Cofaciality and Interplanar Distances for 
Crystalline Structures of Several Electron-Deficient Heterocycles" 

substance 

o-phenanthroline 
1,3-diazanaphthalene 
2,3-diazanaphthalene 
1,8-naphthyridine 
1,5-diazanaphthalene 
2,6-diazanaphthalene 
2,7-diazanaphthalene 
9,10-diazaphenanthrene 
a-phenazine 
aeridine, form II 
acridine, form III 

cofaciality 

no 
yes 
yes 
no 
yes 
no 
no 
yes 
yes 
yes 
yes 

interplanar distance(s), A 

3.48, 3.53, 3.62, 3.46 
3.53 

3.56, 3.82 

3.49 
3.49 
3.49, 3.61 
3.47 

ref 

9 
10 
11 
12 
13 
13 
14 
15 
16 
17 
18 

0 An interplanar distance of ~3.5 A corresponds to the sum of van 
der Waals radii; a distance of ~3.3 A is consistent with significant 
ir-complex formation. 

provisional structure of the trigonal form of 2 (Figure 1, form 
A).2 1 In each of these structures, molecules in adjacent layers 

were offset significantly with respect to one another; further, the 
interlayer spacings in 3 and 4 [3.86(9) and 3.87(5) A, respectively] 
were found to be larger than the expected van der Waals sum of 
3.54 A.22 

However, the triclinic form of hexaamide 2 reveals intra- and 
intermolecular hydrogen bonding with concomitant stacking and 
heterocyclic ir-complexation. The hexaamide molecules stack in 
a closely packed arrangement, although the spacing of the 
molecules in the stack is not uniform. Rather, closely spaced 
dimers are observed with a one-half ring offset that permits 
HOMO-LUMO overlap (Figure 1, form B). Dominating the 
dimer structure are two bifurcated interplanar H-bonds,23 

indicated by dashed lines in Figure 1, that serve as noncovalent 
"clamps" holding the dimer together; such 3-D amide-amide 
H-bonding is reminiscent of the a-helical motif observed in many 
polypeptides. The mean interplanar distance of the HA T rings 
within these dimers, 3.32(10) A, is smaller than the sum of van 
der Waals radii and consistent with ir-complexation.2* This 
interplanar distance compares favorably to the layer separation 
tabulated for 21 different crystal structures of aromatic ir-donor/ 
acceptor complexes, the average separation being 3.29(6) A.25 

In summary, we report that intermolecular ir-complexation in 
HAT hexacarboxamide is induced noncovalently via hydrogen 
bonding. Inasmuch as the manufacturing of desirable macro­
scopic properties may be derived from engineering at the molecular 
level, application to other solid-state structures may be envisioned. 
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